
fmcsR: a Flexible Maximum Common Substructure Algorithm

for Advanced Compound Similarity Searching

Yan Wang, Tyler Backman, Thomas Girke

October 1, 2012

1 Introduction

Maximum common substructure (MCS) algorithms rank among the most sensitive and ac-
curate methods for measuring structural similarities among small molecules. This utility is
critical for many research areas in drug discovery and chemical genomics. The MCS problem
is a graph-based similarity concept that is defined as the largest substructure (sub-graph)
shared among two compounds (Cao et al., 2008b). It fundamentally differs from the struc-
tural descriptor-based strategies like fingerprints or structural keys. Another strength of the
MCS approach is the identification of the actual MCS that can be mapped back to the source
compounds in order to pinpoint the common and unique features in their structures. This
output is often more intuitive to interpret and chemically more meaningful than the purely
numeric information returned by descriptor-based approaches. Because the MCS problem is
NP-complete, an efficient algorithm is essential to minimize the compute time of its extremely
complex search process. The fmcsR package implements an efficient backtracking algorithm
that introduces a new flexible MCS (FMCS) matching strategy to identify MCSs among com-
pounds containing atom and/or bond mismatches. In contrast to this, other MCS algorithms
find only exact MCSs that are perfectly contained in two molecules. The package provides
several utilities to use the FMCS algorithm for pairwise compound comparisons, structure
similarity searching and clustering. To maximize performance, the time consuming compu-
tational steps of fmcsR are implemented in C++. Integration with the ChemmineR package
provides visualization functionalities of MCSs and consistent structure and substructure data
handling routines (Cao et al., 2008a; Backman et al., 2011). The following gives an overview
of the most important functionalities provided by fmcsR.

2 Installation

The R software for running fmcsR and ChemmineR can be downloaded from CRAN (http:
//cran.at.r-project.org/). The fmcsR package can be installed from an open R session
using the biocLite install command.

> source("http://bioconductor.org/biocLite.R")

> biocLite("fmcsR")

1

http://cran.at.r-project.org/
http://cran.at.r-project.org/

fmcsR Manual Quick Overview

3 Quick Overview

To demo the main functionality of the fmcsR package, one can load its sample data stored
as SDFset object. The generic plot function can be used to visualize the corresponding
structures.

> library(fmcsR)

> data(fmcstest)

> plot(fmcstest[1:3], print=FALSE)

Caffeine

●

● ●

●●

●

O

O N

NN

N

Viagra

●
●

●

●

●

●
●

●

●
●●

●
S

O

O

O

O

N
N

N

N
N

N

H

5866133

●

●

●

●

●

●
●

●
●

N

N

N

N

O

O
NH

O
O

Figure 1: Structures depictions of sample data.

The fmcs function computes the MCS/FMCS shared among two compounds, which can be
highlighted in their structure with the plotMCS function.

> test <- fmcs(fmcstest[1], fmcstest[2], au=2, bu=1)

> plotMCS(test)

Caffeine

●

● ●

●
●

●

O

O N

N
N

N

Viagra

●

●

●

●

●

●

●

●

●

●
●

●

S

O

O

O

O

N

N

N

N

N
N

H

Figure 2: The red bonds highlight the MCS shared among the two compounds.

2

fmcsR Manual MCS of Two Compounds

4 Documentation

> library("fmcsR") # Loads the package

> library(help="fmcsR") # Lists functions/classes provided by fmcsR

> library(help="ChemmineR") # Lists functions/classes from ChemmineR

> vignette("fmcsR") # Opens this PDF manual

> vignette("ChemmineR") # Opens ChemmineR PDF manual

The help documents for the different functions and container classes can be accessed with the
standard R help syntax.

> ?fmcs

> ?"MCS-class"

> ?"SDFset-class"

5 MCS of Two Compounds

5.1 Data Import

The following loads the sample data set provided by the fmcsR package. It contains the SD
file (SDF) of 3 molecules stored in an SDFset object.

> data(fmcstest)

> sdfset <- fmcstest

> sdfset

An instance of "SDFset" with 3 molecules

Custom compound data sets can be imported and exported with the read.SDFset and
write.SDF functions, respectively. The following demonstrates this by exporting the sdfset
object to a file named sdfset.sdf. The latter is then reimported into R with the read.SDFset

function.

> write.SDF(sdfset, file="sdfset.sdf")

> mysdf <- read.SDFset(file="sdfset.sdf")

5.2 Compute MCS

The fmcs function accepts as input two molecules provided as SDF or SDFset objects. Its
output is an S4 object of class MCS . The default printing behavior summarizes the MCS
result by providing the number of MCSs it found, the total number of atoms in the query
compound a, the total number of atoms in the target compound b, the number of atoms
in their MCS c and the corresponding Tanimoto Coefficient. The latter is a widely used
similarity measure that is defined here as c/(a + b− c). In addition, the Overlap Coefficient
is provided, which is defined as c/min(a, b). This coefficient is often useful for detecting
similarities among compounds with large size differences.

> mcsa <- fmcs(sdfset[[1]], sdfset[[2]])

> mcsa

3

fmcsR Manual MCS of Two Compounds

An instance of "MCS"

Number of MCSs: 7

CMP1: 14 atoms

CMP2: 33 atoms

MCS: 8 atoms

Tanimoto Coefficient: 0.20513

Overlap Coefficient: 0.57143

> mcsb <- fmcs(sdfset[[1]], sdfset[[3]])

> mcsb

An instance of "MCS"

Number of MCSs: 1

CMP1: 14 atoms

CMP2: 25 atoms

MCS: 14 atoms

Tanimoto Coefficient: 0.56

Overlap Coefficient: 1

If fmcs is run with fast=TRUE then it returns the numeric summary information in a named
vector .

> fmcs(sdfset[1], sdfset[2], fast=TRUE)

Query_Size Target_Size MCS_Size

14.0000000 33.0000000 8.0000000

Tanimoto_Coefficient Overlap_Coefficient

0.2051282 0.5714286

5.3 MCS Class Usage

The MCS class contains three components named stats, mcs1 and mcs2 . The stats slot
stores the numeric summary information, while the structural MCS information for the query
and target structures is stored in the mcs1 and mcs2 slots, respectively. The latter two slots
each contain a list with two subcomponents: the original query/target structures as SDFset
objects as well as one or more numeric index vector(s) specifying the MCS information in
form of the row positions in the atom block of the corresponding SDFset . A call to fmcs

will often return several index vectors. In those cases the algorithm has identified alternative
MCSs of equal size.

> slotNames(mcsa)

[1] "stats" "mcs1" "mcs2"

Accessor methods are provided to return the different data components of the MCS class.

> stats(mcsa) # or mcsa[["stats"]]

4

fmcsR Manual MCS of Two Compounds

Query_Size Target_Size MCS_Size

14.0000000 33.0000000 8.0000000

Tanimoto_Coefficient Overlap_Coefficient

0.2051282 0.5714286

> mcsa1 <- mcs1(mcsa) # or mcsa[["mcs1"]]

> mcsa2 <- mcs2(mcsa) # or mcsa[["mcs2"]]

> mcsa1[1] # returns SDFset component

$query

An instance of "SDFset" with 1 molecules

> mcsa1[[2]][1:2] # return first two index vectors

$CMP1_fmcs_1

[1] 3 8 7 4 9 5 11 1

$CMP1_fmcs_2

[1] 3 8 7 4 9 5 1 13

The mcs2sdfset function can be used to return the substructures stored in an MCS instance
as SDFset object. If type="new" new atom numbers will be assigned to the subsetted SDF,
while type="old" will maintain the atom numbers from its source. For details consult the
help documents ?mcs2sdfset and ?atomsubset .

> mcstosdfset <- mcs2sdfset(mcsa, type="new")

> plot(mcstosdfset[[1]], print=FALSE)

5

fmcsR Manual 6 FMCS of Two Compounds

CMP1_fmcs_1

●

●●

●

NH2

NHNH2

O

CMP1_fmcs_2

●

●●

●

NH2

NHNH2

O

CMP1_fmcs_3

●

●

●

NH

NH

O

CMP1_fmcs_4

●

●

●

NH

NH

O

CMP1_fmcs_5

●

●
●

NH

NH

O

CMP1_fmcs_6

●

●
●

NH

NH

O

CMP1_fmcs_7

●●

●

●

NHNH2

NH2

O

To construct an MCS object manually, one can provide the required data components in a
list .

> mylist <- list(stats=stats(mcsa), mcs1=mcs1(mcsa), mcs2=mcs2(mcsa))

> as(mylist, "MCS")

An instance of "MCS"

Number of MCSs: 7

CMP1: 14 atoms

CMP2: 33 atoms

MCS: 8 atoms

Tanimoto Coefficient: 0.20513

Overlap Coefficient: 0.57143

6 FMCS of Two Compounds

If fmcs is run with its default paramenters then it returns the MCS of two compounds, because
the mismatch parameters are all set to zero. To identify FMCSs, one has to raise the number
of upper bound atom mismates au and/or bond mismatches bu to interger values above zero.

> plotMCS(fmcs(sdfset[1], sdfset[2], au=0, bu=0))

6

fmcsR Manual 6 FMCS of Two Compounds

Caffeine

●

● ●

●
●

●

O

O N

N
N

N

Viagra

●

●

●

●

●

●

●

●

●

●
●

●

S

O

O

O

O

N

N

N

N

N
N

H

Figure 3: MCS for sdfset[1] and sdfset[2] with au=0 and bu=0

> plotMCS(fmcs(sdfset[1], sdfset[2], au=1, bu=1))

Caffeine

●

● ●

●
●

●

O

O N

N
N

N

Viagra

●

●

●

●

●

●

●

●

●

●
●

●

S

O

O

O

O

N

N

N

N

N
N

H

Figure 4: FMCS for sdfset[1] and sdfset[2] with au=1 and bu=1

> plotMCS(fmcs(sdfset[1], sdfset[2], au=2, bu=2))

7

fmcsR Manual 7 FMCS Search Functionality

Caffeine

●

● ●

●
●

●

O

O N

N
N

N

Viagra

●

●

●

●

●

●

●

●

●

●
●

●

S

O

O

O

O

N

N

N

N

N
N

H

Figure 5: FMCS for sdfset[1] and sdfset[2] with au=2 and bu=2

> plotMCS(fmcs(sdfset[1], sdfset[3], au=0, bu=0))

Caffeine

●

● ●

●
●

●

O

O N

N
N

N

5866133

●

●

●

●

●

●

●

●

●

N

N

N

N

O

O

NH

O

O

Figure 6: MCS for sdfset[1] and sdfset[3] with au=0 and bu=0

7 FMCS Search Functionality

The fmcsBatch function provides FMCS search functionality for compound collections stored
in SDFset objects.

> fmcsBatch(sdfset[1], sdfset[1:3], au=0, bu=0)

Query_Size Target_Size MCS_Size Tanimoto_Coefficient

Caffeine 14 14 14 1.0000000

Viagra 14 33 8 0.2051282

5866133 14 25 14 0.5600000

Overlap_Coefficient

Caffeine 1.0000000

8

fmcsR Manual 8 Clustering with FMCS

Viagra 0.5714286

5866133 1.0000000

8 Clustering with FMCS

The fmcsBatch function can be used to compute a similarity matrix for clustering with various
algorithms available in R. The following example uses the FMCS algorithm to compute a
similarity matrix that is used for hierarchical clustering with the hclust function and the
result is plotted in form of a dendrogram.

> data(sdfsample) # Loads larger sample data set

> sdf <- sdfsample[1:7]

> d <- sapply(cid(sdf), function(x)

+ fmcsBatch(sdf[x], sdf, au=0, bu=0,

+ matching.mode="aromatic")[,"Overlap_Coefficient"])

> d

CMP1 CMP2 CMP3 CMP4 CMP5 CMP6 CMP7

CMP1 1.0000000 0.2307692 0.2307692 0.2812500 0.5217391 0.6842105 0.2857143

CMP2 0.2307692 1.0000000 0.4230769 0.5384615 0.2173913 0.4736842 0.2857143

CMP3 0.2307692 0.4230769 1.0000000 0.3076923 0.2173913 0.4736842 0.9047619

CMP4 0.2812500 0.5384615 0.3076923 1.0000000 0.3043478 0.5263158 0.2857143

CMP5 0.5217391 0.2173913 0.2173913 0.3043478 1.0000000 0.5789474 0.2380952

CMP6 0.6842105 0.4736842 0.4736842 0.5263158 0.5789474 1.0000000 0.3157895

CMP7 0.2857143 0.2857143 0.9047619 0.2857143 0.2380952 0.3157895 1.0000000

> hc <- hclust(as.dist(1-d), method="complete")

> plot(as.dendrogram(hc), edgePar=list(col=4, lwd=2), horiz=TRUE)

0.8 0.6 0.4 0.2 0.0

CMP5

CMP1

CMP6

CMP3

CMP7

CMP2

CMP4

Figure 7: Hierarchical clustering result.

9

fmcsR Manual Version Information

The FMCS shared among compound pairs of interest can be visualized with plotMCS, here
for the two most similar compounds from the previous tree:

> plotMCS(fmcs(sdf[3], sdf[7], au=0, bu=0, matching.mode="aromatic"))

CMP3

●

● ●

●

●

●

●
●

●

●

S

O O

O

N

N

N

N

H

H

CMP7

●

●

●

●

●

●

● ●

S

O

O

O

N

N

N
H

Figure 8: Most similar compounds from previous tree.

9 Version Information

> sessionInfo()

R version 2.15.1 (2012-06-22)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] fmcsR_1.0.0 ChemmineR_2.10.0

loaded via a namespace (and not attached):

[1] RCurl_1.95-0 tools_2.15.1

10

fmcsR Manual References

References

T W Backman, Y Cao, and T Girke. ChemMine tools: an online service for analyzing and
clustering small molecules. Nucleic Acids Res, 39(Web Server issue):486–491, Jul 2011. doi:
10.1093/nar/gkr320. URL http://www.hubmed.org/display.cgi?uids=21576229.

Y Cao, A Charisi, L C Cheng, T Jiang, and T Girke. ChemmineR: a compound mining frame-
work for R. Bioinformatics, 24(15):1733–1734, Aug 2008a. doi: 10.1093/bioinformatics/
btn307. URL http://www.hubmed.org/display.cgi?uids=18596077.

Y Cao, T Jiang, and T Girke. A maximum common substructure-based algorithm for
searching and predicting drug-like compounds. Bioinformatics, 24(13):366–374, Jul 2008b.
doi: 10.1093/bioinformatics/btn186. URL http://www.hubmed.org/display.cgi?uids=

18586736.

11

http://www.hubmed.org/display.cgi?uids=21576229
http://www.hubmed.org/display.cgi?uids=18596077
http://www.hubmed.org/display.cgi?uids=18586736
http://www.hubmed.org/display.cgi?uids=18586736

	Introduction
	Installation
	Quick Overview
	Documentation
	MCS of Two Compounds
	Data Import
	Compute MCS
	MCS Class Usage

	FMCS of Two Compounds
	FMCS Search Functionality
	Clustering with FMCS
	Version Information
	References

